Facial expression recognition using shape and texture information
نویسندگان
چکیده
A novel method based on shape and texture information is proposed in this paper for facial expression recognition from video sequences. The Discriminant Non-negative Matrix Factorization (DNMF) algorithm is applied at the image corresponding to the greatest intensity of the facial expression (last frame of the video sequence), extracting that way the texture information. A Support Vector Machines (SVMs) system is used for the classification of the shape information derived from tracking the Candide grid over the video sequence. The shape information consists of the differences of the node coordinates between the first (neutral) and last (fully expressed facial expression) video frame. Subsequently, fusion of texture and shape information obtained is performed using Radial Basis Function (RBF) Neural Networks (NNs). The accuracy achieved is equal to 98,2% when recognizing the six basic facial expressions.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملTexture and shape information fusion for facial expression and facial action unit recognition
A novel method based on fusion of texture and shape information is proposed for facial expression and Facial Action Unit (FAU) recognition from video sequences. Regarding facial expression recognition, a subspace method based on Discriminant Non-negative Matrix Factorization (DNMF) is applied to the images, thus extracting the texture information. In order to extract the shape information, the ...
متن کاملA Novel Feature Extraction Method for Facial Expression Recognition
In this work, a novel facial feature extraction method is proposed for automatic facial expressions recognition, which detecting local texture information, global texture information and shape information of the face automatically to form the facial features. First, Active Appearance Model (AAM) is used to locate facial feature points automatically. Then, the local texture information in these ...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملDiscriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition
Recently, there have been increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works used spatiotemporal local binary pattern (STLBP) for micro-expression recognition and considered dynamic textur...
متن کامل